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Abstract. The primary objective of this research was to explore the effectiveness of 
Neural Radiance Fields (NeRF) in acquiring architectural forms and compare them with 
traditional photogrammetry results. The study began with a comprehensive literature 
review on AI in architecture and NeRF. Afterwards, a single case study applicable to 
both NeRF and photogrammetry was selected for comparison. The NeRF model showed 
the ability to accurately represent details and light effects, adapting reflections and 
transparencies to real-world conditions, as well as handling occlusions, and inferring 
three-dimensional information. In similar situations, Photogrammetry generated less 
coherent volumetrics or failed to interpret objects. Additionally, tests with a reduced 
number of images showed that the NeRF model maintained its characteristics, while 
photogrammetry suffered a decrease in quality and completeness. However, NeRF's 
performance was influenced by data collection quality. Insufficient data led to lower-
quality volumetrics with imperfections, highlighting the importance of careful data 
collection, even with technologies like NeRF. 

Keywords: Neural Radiance Fields (NeRF), Photogrammetry, Artificial intelligence, 
Design, Architecture. 

1 Introduction 

In the current technological landscape, there is an observed merger 
between digital, physical, and biological technologies, a phenomenon which 
Klaus Schwab (2017) has termed the Fourth Industrial Revolution. Among the 
disciplines affected by this revolution, architecture has seen significant 
transformations due to the adoption of new technologies. As noted by Pena et 
al. (2021), Artificial Intelligence (AI) emerges not just as a tool to automate 
processes, but also as a powerful collaborator that enhances capabilities and 
stimulates creativity in the way we conceptualize, design, and build within the 
discipline. 



 

In architecture, a specific aspect of these changes has been the 
representation of forms. Historically, it has evolved from manual methods to 
advanced digital instruments. AI, with its ability to analyze and process large 
volumes of data efficiently, has proven to be an essential tool in various stages 
of architecture. Photogrammetry has traditionally been used to transform 2D 
images into 3D models (Almagro, 2000). However, recent innovations in AI, 
particularly Neural Radiance Fields (NeRF), which are neural network-based 
techniques designed to model three-dimensional scenes from images, as 
proposed by Mildenhall et al. (2021), emerge as promising alternatives to 
enhance the accuracy and functionality of three-dimensional modeling. 

Given this backdrop, the question arises: How can AI, through the use of 
NeRF, refine the acquisition of architectural forms in contrast to traditional 
photogrammetry? This paper proposes a comparative analysis between NeRF 
and photogrammetry, focusing on the advantages and challenges of both 
approaches. The aim is to highlight the role that AI is taking in architectural 
representation and to anticipate the implications that these advancements 
might have on the discipline in the near future. 

The core purpose of this study is to guide professionals and academics 
looking to integrate AI into architecture, highlighting the opportunities that tools 
like NeRF can provide. In an era of constant technological evolution, AI stands 
out as a pivotal transformative element in contemporary architecture, promising 
to further revolutionize the field in the coming decades. 

2 Methodology  

Within the context of this research, the aim was to explore the efficacy of the 
NeRF neural networks in the acquisition of architectural forms and contrast 
them with traditional photogrammetry. To comprehensively address the 
research question, a mixed-methodology was adopted, combining a literature 
review with a practical analysis of case studies. 

The technical approach focused on the key differences between the 
interpretation of images through NeRF and photogrammetry. According to 
Mildenhall et al. (2021), NeRF utilizes a combination of neural networks and 
optimization algorithms to infer the 3D geometry and appearance of a scene 
from 2D images, in contrast to photogrammetry that employs triangulation 
techniques to generate 3D models. 

The choice of a mixed-methodology was grounded in the combination of 
theoretical and practical aspects of NeRF usage in architecture. The literature 
review offered an overview of the theoretical framework and current trends 
related to NeRF and photogrammetry. Additionally, the analysis of case studies 
provided an empirical context to assess the practical applications of these 
technologies and discern their advantages and limitations. 

 



 

To ensure compatibility between the NeRF and photogrammetry case 
studies, a case applicable to both techniques was chosen. This case originates 
from the FRAC/Arq program (Close-Range Photogrammetry for Architecture), 
an elective course from the Faculty of Architecture, Design, and Urbanism 
(Udelar). This decision aimed to ensure that variables such as building 
characteristics and capture conditions were consistent, thus avoiding 
distortions in the comparative results. 

Through this methodology, the intent was to offer a broad understanding of 
NeRF’s efficacy in acquiring architectural forms and how it compares to 
traditional photogrammetry. This approach also served as a starting point for 
deeper discussions about the future applications and implications of NeRF in 
architecture. 

2.1 Literature Review 

To understand the functionality of NeRFs, it is necessary to have a general 
knowledge of real-time computer graphics and rendering techniques. A relevant 
parallel would be three-dimensional video games, in which user interactions 
continuously modify the game’s internal state, requiring the software to 
constantly recalculate aspects such as position, lighting, shading, and texture, 
in a process known as rendering. 

“Ray tracing” has emerged as one of the most prominent rendering 
techniques in recent times. Its approach focuses on replicating the interaction 
of photons with the environment to emulate visual perception in a digital context. 
Its methodology involves projecting rays of light from each pixel towards light 
sources to determine that pixel’s color (Whitted, 1980). Despite its accuracy, it 
has faced challenges in terms of computational cost, with rendering times that 
can extend from hours to days. However, recent innovations in hardware and 
software have facilitated significant acceleration in this process, positively 
impacting areas like cinematography, video games, and architectural 
visualization. 

While ray tracing holds a dominant position in computer graphics, it is not 
the only approach to interpret three-dimensional data. This research focuses 
on “volumetric ray marching,” a volumetric rendering technique. Contrary to ray 
tracing, which focuses on reflections on surfaces, this method involves rays that 
traverse and integrate with objects in the scene (Sitzmann et al., 2019). 

When applying this technique to a three-dimensional space, the concept of 
a voxel is introduced, the three-dimensional equivalent of a pixel. Each voxel 
contains information used to determine the color and opacity of a corresponding 
pixel in the rendered image. The information of each voxel is translated into 
color and opacity through a transfer function, a process adaptable to visualize 
different aspects of a volume of data (Mildenhall et al., 2021). 

 
In this context, Neuronal Radiance Fields (NeRF), through the use of 

artificial intelligence and machine learning, propose an innovative approach to 



 

rendering based on volumetric ray marching, specifically aiming to optimize 
those aspects where this technique faces greater challenges. 

2.1.1 Volumetric Rendering with NeRF 

The primary objective of NeRF is, through training a system based on neural 
networks, to acquire the ability to generate any new perspective requested, 
starting from a pre-existing set of images: photographs of the object intended 
to be represented. 

According to Mildenhall et al. (2021), volumetric rendering involves casting 
a ray, recording its path, and assigning a color using a transfer function. 
However, the challenge of the study lies in working with pre-existing images. 
When selecting one of these images, the desired color for each pixel is known 
and can be used to supervise the training of a neural network tasked with 
learning to encode the scene. 

As previously emphasized, although the transfer function is crucial, it can be 
replaced by a neural network that predicts the radiated color of each voxel 
based on its position and orientation (Mildenhall et al., 2021). Initially, the 
network produces random colors, but with the knowledge of the actual image, 
it is possible to correct the error between the prediction and the real image. This 
process is repeated, refining the predictions, until the network can accurately 
predict the light emitted at each point, generating synthetic yet realistic three-
dimensional scenes. 

Following this line, Sitzmann et al. (2019) mention that neural networks 
represent the scene as a continuous function of depth and color. This 
representation facilitates the generation of detailed images from any 
perspective, encapsulating the scene as a function that maps a 3D coordinate 
to specific scene properties. 

Despite its apparent complexity, the representation based on the NeRF 
technique seeks to offer an innovative solution to the traditional limitations of 
architectural form acquisition. As Mildenhall et al. (2021) state, the ability to 
generate highly detailed representations from 2D images has the potential to 
change the conventional focus in computer graphics, impacting how 
architecture is presented and communicated. 

2.2 Case Study 

This study is framed within the elective module of Close-Range 
Photogrammetry (CRP) from the Faculty of Architecture, Design, and Urbanism 
(FADU) at the University of the Republic (UdelaR). The selection of this context 
arises from the alignment between the objectives of the CRP module and the 
current investigative approach. 

The CRP module aims at introducing and exploring new technologies that 
facilitate the interpretation of the geometric, morphological, and visual 
characteristics of architectural environments. In this regard, the integration of 



 

AI, through NeRF, aligns with the module’s purpose and provides a conducive 
academic context to experiment with the technology and assess its advantages 
and distinctions compared to photogrammetry. 

To ensure the validity of comparisons between the case studies using NeRF 
and photogrammetry, as previously mentioned, a methodology was adopted 
involving the selection of a unique case study applicable to both techniques. 
The purpose of this strategy is to control and keep uniform the factors that could 
influence the results, such as inherent features of the building and its 
surroundings, and the specific conditions under which image captures were 
conducted. 

In line with this methodology, the final delivery of a subgroup of CRP module 
students was chosen as the case study. This group consisted of Mariano 
Cabeza, Rodrigo Gómez, Santiago Irureta, Romina Martínez, and Ulises Morín, 
during the first semester of 2023. The study elements included in this case, 
encompassing both captured images and generated data, were published on 
the website: https://ramblahistorica.wixsite.com/inicio. 

The primary goal of the work carried out by the students was to investigate 
the relationship between the city of Montevideo and its waterfront throughout 
various historical stages. To achieve this goal, multiple records were taken at 
points of interest located along the city’s waterfront. Specifically, two historically 
relevant architectural sites were selected: the English Temple and the South 
Cube, both located near Plaza España, in the Old City district. 

For capturing images of the study area, a planned flight was conducted in 
DroneDeploy with the DJI Mavic Pro 3 drone. Concurrently, students took 
ground-level photographs of the studied site to enhance the final survey 
outcome, resulting from a combination of aerial and ground photos. For 
processing the obtained information using the photogrammetry technique, the 
Agisoft Metashape software was utilized. Initially, a point cloud was created 
from the collected photographs, and subsequently, a textured mesh was 
embedded on the website. 
 

Figure 1. Photogrammetry of the English Temple. Source: 
https://ramblahistorica.wixsite.com/inicio/general.6  



 

In the next phase, the techniques of photogrammetry and NeRF applied to 
the case study will be compared. The goal is to determine whether Artificial 
Intelligence, particularly NeRF, enhances the capture and representation of 
architectural forms compared to traditional photogrammetric methods. 

3 Results 

The software used for training the NeRF model was based on an open-
source project developed by Nvidia, named Instant NGP. The source code is 
available on GitHub (an online platform that allows hosting, sharing, and 
collaborating on open-source projects) for users to download, compile, and use 
in their own projects and research. 

Upon setting the dataset and the software, the NeRF implementation in the 
study context was initiated. The training process evolved through multiple 
phases, starting with a preprocessing period where minor adjustments were 
made to the images to ensure proper interpretation by the neural network. 

During the initial training phase of the neural network, it was observed that 
within a five-second span, the basic volumetry was generated. Even though this 
volumetry allowed for identification of the general structure, it was marked by 
significant volumetric noise. By the end of the first minute, the representation of 
the scene, spanning approximately 300 m^2, had achieved a level of detail that 
enabled contextual interpretation. However, some regions with insufficient 
information, especially those far or out of photographic range, need to be 
highlighted. Subsequently, after 30,000 cycles and around eight minutes of 
training, the object showed no significant improvements, leading to the decision 
to terminate the training. 

Upon concluding the training, a set of convergence and divergence points 
between both technologies (NeRF and photogrammetry) was identified. The 
first notable distinction emerges from the underlying conception of each system. 
Regarding NeRF, it doesn’t infer the polygonal mesh of an object, but its entire 
three-dimensional volume. In this manner, the result obtained with NeRF 
encompassed the luminous information emitted by the scene in its entirety, 
adopting a volumetric rendering approach, which contrasts the surface 
rendering characteristic of photogrammetry. 

In this context, the NeRF technology achieves a faithful representation of 
details and lighting effects, closely aligned with reality. Thus, depending on the 
viewpoint from which the resulting volumetry is observed, one can appreciate 
the precise adaptation of reflections and transparencies to the real scene 
conditions. 

When analyzing specific elements, such as reflections and gleams produced 
by water, as well as glasses placed in the apertures of the English Temple or 
other buildings, NeRF’s ability to interpret them appropriately is evident, 
producing coherent volumetry. This differs from the results obtained through 



 

photogrammetry, which, under similar situations, led to the generation of 
amorphous volumetry or a lack of object interpretation. 

Moreover, NeRF’s capability to handle occlusions in the study scene stands 
out. In a three-dimensional environment, occlusions are areas hidden or 
blocked by other objects in the scene. For photogrammetry, these occluded 
zones posed a challenge due to the absence of direct visual information. In 
contrast, results from Instant NGP showcase the ability to infer three-
dimensional information from multiple angles, even in occlusion situations, as 
occurred with the bottom faces of the AEBU building. 

When analyzing the modeling of complex surfaces, another distinction 
between photogrammetry and NeRF technology arises. Photogrammetry, 
conditioned by its dependence on interpreting two-dimensional visual 
information, faced challenges in generating highly complex volumes, such as 
trees, vehicles, and the rocky coastline profile. Conversely, NeRF’s volumetric 
approach proved more effective in handling these surfaces. This capability 
contributed to the generation of a more accurate and coherent volumetry, even 
in the presence of surfaces and textures of high complexity. 
 

Figure 2. Volumetry generación using NeRF. Source: author’s photo 

In the presented case study, it was not possible to effectively assess the 
changing light conditions or the management of moving objects. Data collection 
was conducted on a cloudy day, resulting in consistent light conditions 
throughout the 18-minute flight period, and the only moving objects were 
vehicles, which were not a crucial component of the model focused on 
architecture and the environment. 

Furthermore, although both models were generated using the same set of 
photographs, additional tests were carried out with fewer images. In all 
evaluated scenarios, the NeRF model demonstrated more efficient volumetric 
handling, even when using fewer photographs. 

In line with the above, it is worth noting that the technology underpinning 
NeRF and the broader field of AI is characterized by its dynamism. This quality 
implies the need for constant updating and vigilance against potential 



 

improvements, developments, and modifications that can directly influence its 
effectiveness in architectural visualization. While recent advancements have 
overcome some inherent limitations of these technologies, as evidenced in 
initiatives like “NeRF in the Wild” by Martin-Brualla et al. (2021) and “NeRF++” 
by Zhang, Riegler, Snavely & Koltun, (2020), continuous research and 
adaptation to emerging changes are essential to maintain their relevance and 
effectiveness. 

The next chapter will delve deeper into these aspects, highlighting key 
considerations for the adoption and effective application of NeRF and other AI 
technologies in the field of architecture and visualization. 

4 Discussion 

This research has delved into the environment of new digital media and its 
relationship with architecture, positioning it within the conceptual context of 
emerging architectural practices. Starting from the notion that architecture, as 
a discipline, is not immune to the challenges and advances posed by digital 
media, this work has analyzed the convergence of both domains from an 
academic and practical perspective. 

In this regard, the study revealed that although the application of NeRF in 
the field of architecture offered significant potential in the representation and 
visualization of forms, its successful implementation required a vast range of 
technical and practical factors. The primary hurdle was found to be the high 
computational requirements and the need for specialized knowledge in 
computer science and programming, limiting its applicability in technologically 
restricted settings. While there are alternatives such as cloud execution through 
services like LUMA AI, they do not offer the same quality and accuracy in 
representations. 

In addition to the considerations mentioned above, it was observed that the 
scalability and generalization of NeRF in various contexts and environments 
posed specific challenges. Transferring a NeRF-trained model to a new context, 
especially to different software for further work, required substantial 
adjustments. This revealed a limitation in the technology’s adaptability and was 
identified as a significant challenge in integration with existing tools and 
workflows in architectural practice. 

The challenges and limitations identified in the adoption of NeRF in 
architectural practice highlight the inherent complexity of this emerging 
technology. Transferring trained models to new contexts, the demand for 
specialized programming skills, and compatibility with conventional tools are 
obstacles reflecting a limitation in its adaptability and efficacy. Additionally, the 
infrastructure needed to implement NeRF is complex and demands powerful, 
updated equipment, limiting its efficient application to a broader audience. 



 

Despite the complexity, NeRF has been recognized as a promising 
technique, albeit still in development. The possibility of a future technological 
transformation in architectural form acquisition has been identified, but further 
research and improvement in areas where NeRF has limitations are still 
required. The contrast between photogrammetry and NeRF hasn’t been drastic; 
however, it has been suggested that AI represents an evolution of a technique 
rather than a definitive solution. The exploration of NeRF is seen as an 
advancement in technique that still requires refinement and adaptation. 

The research has emphasized the importance of carefully assessing 
available capabilities and resources, as well as the necessary training to 
effectively implement these technologies, despite their current limitations in 
implementation and usage. Ongoing research and development in these areas 
will be crucial to overcome these obstacles and fully leverage NeRF’s potential 
in contemporary practice. 

In this context, the study has revealed that the adoption and application of 
NeRF in architectural form acquisition are in an early stage and require further 
research and developments. While currently not showing a significant 
difference from photogrammetry, NeRF has the potential to become, under 
certain conditions in the future, the standard methodology for form acquisition. 
This finding provides a valuable contribution to the architectural field, 
establishing a framework for the future of architectural representation, where 
NeRF could play a pivotal role in the digital era. 
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